Causes and treatment of Hypertension with Diabetes

Treatment of Hypertension with Diabetes

Today we are presenting the topic- Causes and Treatment of Hypertension with Diabetes by Dr. Md. Asaduzzaman. In this topic we can learn what is Hypertension, the risk factor of Hypertension and treatment how we can reduce Hypertension in the target level.

Hypertension with diabetes

Hypertension (defined as a blood pressure ≥140/90 mmHg) is an extremely common comorbid condition in diabetes, affecting ∼20–60% of patients with diabetes, depending on obesity, ethnicity, and age. In type 2 diabetes, hypertension is often present as part of the metabolic syndrome of insulin resistance also including central obesity and dyslipidemia. In type 1 diabetes, hypertension may reflect the onset of diabetic nephropathy. Hypertension substantially increases the risk of both macrovascular and microvascular complications, including stroke, coronary artery disease, and peripheral vascular disease, retinopathy, nephropathy, and possibly neuropathy. In recent years, adequate data from well-designed randomized clinical trials have demonstrated the effectiveness of aggressive treatment of hypertension in reducing both types of diabetes complications.

Human host of hypertension in Adults with Diabetes
These recommendations are intended to apply to non-pregnant adults with type 1 or type 2 diabetes.
Target audience
These recommendations are intended for the use of health care professionals who care for patients with diabetes and hypertension, including specialist and primary care physicians, nurses and nurse practitioners, physicians’ assistants, educators, dietitians, and others.

These recommendations are based on the American Diabetes Association Technical Review “Treatment of Diabetes in Adult Patients with Hypertension. A technical review is a systematic review of the medical literature that has been peer-reviewed by the American Diabetes Association’s Professional Practice Committee.

Evidence review
Hypertension as a risk factor for complications of diabetes
Diabetes increases the risk of coronary events twofold in men and fourfold in women. Part of this increase is due to the frequency of associated cardiovascular risk factors such as hypertension, dyslipidemia, and clotting abnormalities. In observational studies, people with both diabetes and hypertension have approximately twice the risk of cardiovascular disease as nondiabetic people with hypertension. Hypertensive diabetic patients are also at increased risk for diabetes-specific complications including retinopathy and nephropathy. In the U.K. Prospective Diabetes Study (UKPDS) epidemiological study, each 10-mmHg decrease in mean systolic blood pressure was associated with reductions in risk of 12% for any complication related to diabetes, 15% for deaths related to diabetes, 11% for myocardial infarction, and 13% for microvascular complications. No threshold of risk was observed for any end point.

Evidence for target levels of blood pressure in patients with diabetes
Hypertension Optimal Treatment (HOT) trial both demonstrated improved outcomes, especially in preventing stroke, in patients assigned to lower blood pressure targets. Optimal outcomes in the HOT study were achieved in the group with a target diastolic blood pressure of 80 mmHg (achieved 82.6 mmHg). Randomized clinical trials demonstrate the benefit of targeting a diastolic blood pressure of ≤80 mmHg. Epidemiological analyses show that blood pressures ≥120/70 mmHg are associated with increased cardiovascular event rates and mortality in persons with diabetes. Therefore, a target blood pressure goal of <130/80 mmHg is reasonable if it can be safely achieved. There is no threshold value for blood pressure, and risk continues to decrease well into the normal range. Achieving lower levels, however, would increase the cost of care as well as drug side effects and is often difficult in practice. Whether even more aggressive treatment would further reduce the risk is an unanswered question, but may be answered by clinical trials now in progression.
Non-drug management of hypertension

Dietary management
Sodium restriction has been effective in reducing blood pressure in individuals with essential hypertension. Several controlled studies have looked at the relationship between weight loss and blood pressure reduction. Weight reduction can reduce blood pressure independent of sodium intake and also can improve blood glucose and lipid levels. The loss of one kilogram in body weight has resulted in decreases in mean arterial blood pressure of ∼1 mmHg. The role of very low calorie diets and pharmacologic agents that induce weight loss in the management of hypertension in diabetic patients has not been adequately studied. Some appetite suppressants may induce increases in blood pressure levels, so these must be used with care. Given the present evidence, weight reduction should be considered an effective measure in the initial management of mild-to-moderate hypertension, and these results could probably be extrapolated to the diabetic hypertensive population.

Sodium restriction has not been tested in the diabetic population in controlled clinical trials. However, results from controlled trials in essential hypertension have shown a reduction in systolic blood pressure of ∼5 mmHg and diastolic blood pressure of 2–3 mmHg with moderate sodium restriction (from a daily intake of 200 mmol [4,600 mg] to 100 mmol [2,300 mg] of sodium per day). A dose response effect has been observed with sodium restriction. Even when pharmacologic agents are used, there is often a better response when there is concomitant salt restriction due to the aforementioned volume component of the hypertension that is almost always present. The efficacy of these measures in diabetic individuals is not known.

Moderately intense physical activity, such as 30–45 min of brisk walking most days of the week, has been shown to lower blood pressure and is recommended in the Sixth Report of the Joint National Committee on Prevention, Detection, Evaluation and Treatment of High Blood Pressure (JNC VI). The American Diabetes Association Consensus Development Conference on the Diagnosis of Coronary Heart Disease in People with Diabetes has recommended that diabetic patients who are 35 years of age or older and are planning to begin a vigorous exercise program should have exercise stress testing or other appropriate noninvasive testing. Stress testing is not generally necessary for asymptomatic patients beginning moderate exercise such as walking. Smoking cessation and moderation of alcohol intake are also recommended by JNC VI and are clearly appropriate for all patients with diabetes.

In lowering high blood pressure?
Apple Cider Vinegar
Apple cider vinegar for blood pressure is believed to work in a number of ways.
It is a great component in helping to lower bad cholesterol, which in turn has a positive effect on blood pressure.
AVC is also a detoxifier, and can help your body fight off diseases and release free radicals that wreak havoc on your body on a daily basis, which also indirectly can help to reduce blood pressure. When you use apple cider vinegar for high blood pressure remedy, you are most likely giving your entire body a boost, not just treating your blood pressure issues.
How does apple cider vinegar lower blood pressure exactly? This isn’t entirely known, but medical studies have shown that people who consumed apple cider vinegar in their daily meals showed lower levels in their blood pressure without changing anything else in their diets, according to recent medical reports. You can have the same results in simply adding ACV to your daily diet.

Lemons help keep blood vessels soft and pliable and by removing any rigidity, high blood pressure will be reduced. In addition, you can help lower your chance of heart failure by consuming lemon juice regularly, due to its vitamin C content. Vitamin C is an antioxidant that helps neutralize the harmful effects of free radicals.

High blood pressure cure
Simply drink a cup of warm water with the juice from half a lemon added to it each morning on an empty stomach. For best results, do not add salt or sugar.

Watermelon Seeds
Watermelon seeds contain a compound called cucurbocitrin, which helps widen the blood capillaries. At the same time, it also helps improve kidney functioning. This in turn reduces blood pressure levels and also helps a lot with arthritis.

Grind equal quantities of dried watermelon seeds and poppy seeds (khus khus). Take one teaspoon of this mixture in the morning on an empty stomach and again in the evening.

Alternatively, add two teaspoons of gently crushed, dried watermelon seeds to one cup of boiled water. Steep it for about an hour, then strain it. Take four tablespoons of this water at regular intervals throughout the day.

Several studies have demonstrated blood pressure lowering effects of garlic. Both raw and cooked garlic help control high blood pressure and at the same time reduce cholesterol levels. Garlic helps relax blood vessels by stimulating the production of nitric oxide and hydrogen sulfide.

Eat one or two crushed garlic cloves daily. You can simply crush them with your hands. Crushing garlic cloves creates hydrogen sulfide, a compound that promotes good blood flow, removes gas and reduces the pressure on the heart. If you do not like eating raw garlic or if it causes a burning sensation, then take it along with a cup of milk.

You can also mix five or six drops of garlic juice in four teaspoons of water and take it twice a day.

Treatment with medicine for hypertension
There are a number of trials demonstrating the superiority of drug therapy versus placebo in reducing outcomes including cardiovascular events and microvascular complications of retinopathy and progression of nephropathy. These studies used different drug classes, including angiotensin-converting enzyme (ACE) inhibitors, angiotensin receptor blockers (ARBs), diuretics, and β-blockers, as the initial step in therapy. All of these agents were superior to placebo; however, it must be noted that many patients required three or more drugs to achieve the specified target levels of blood pressure control. Overall there is strong evidence that pharmacologic therapy of hypertension in patients with diabetes is effective in producing substantial decreases in cardiovascular and microvascular diseases.

There are limited data from trials comparing different classes of drugs in patients with diabetes and hypertension. The UKPDS-Hypertension in Diabetes Study showed no significant difference in outcomes for treatment based on an ACE inhibitor compared with a β-blocker. There were slightly more withdrawals due to side effects and there was more weight gain in the β-blocker group. In postmyocardial infarction patients, β-blockers have been shown to reduce mortality.

There are numerous studies documenting the effectiveness of ACE inhibitors and ARBs in retarding the development and progression of diabetic nephropathy. ACE inhibitors have a favorable effect on cardiovascular outcomes, as demonstrated in the MICRO-HOPE study. This cardiovascular effect may be mediated by mechanisms other than blood pressure reduction. It is possible that other drug classes may behave similarly.

Some studies have shown an excess of selected cardiac events in patients treated with dihydropyridine calcium channel blockers (DCCBs) compared with ACE inhibitors. Ongoing trials including the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT) study should help to resolve this issue. DCCBs in combination with ACE inhibitors, β-blockers, and diuretics, as in the HOT study and the Systolic Hypertension in Europe (Syst-Eur) Trial, did not appear to be associated with increased cardiovascular morbidity. However, ACE inhibitors and β-blockers appear to be superior to DCCBs in reducing myocardial infarction and heart failure. Therefore, DCCBs appear to be appropriate agents in addition to, but not instead of, ACE inhibitors and β-blockers. Non-DCCBs (i.e., verapamil and diltiazem) may reduce coronary events. In short-term studies, non-DCCBs have reduced albumin excretion.

There are no long-term studies of the effect of α-blockers, loop diuretics, or centrally acting adrenergic blockers on long-term complications of diabetes. The α-blocker arm of the ALLHAT study was stopped by the data and safety monitoring committee because of an increase in cases of new-onset heart failure in patients assigned to the α-blocker. While this could merely represent unmasking of heart failure in patients previously treated with an ACE inhibitor or a diuretic, it seems reasonable to use these as second-line agents when preferred classes have been ineffective or when other specific indications, such as benign prostatic hypertrophy (BPH), are present.

There is a strong epidemiological connection between hypertension in diabetes and adverse outcomes of diabetes. Clinical trials demonstrate the efficacy of drug therapy versus placebo in reducing these outcomes and in setting an aggressive blood pressure–lowering target of <130/80 mmHg. It is very clear that many people will require three or more drugs to achieve the recommended target. Achievement of the target blood pressure goal with a regimen that does not produce burdensome side effects and is at reasonable cost to the patient is probably more important than the specific drug strategy.

Because many studies demonstrate the benefits of ACE inhibitors on multiple adverse outcomes in patients with diabetes, including both macrovascular and microvascular complications, in patients with either mild or more severe hypertension and in both type 1 and type 2 diabetes, the established practice of choosing an ACE inhibitor as the first-line agent in most patients with diabetes is reasonable. In patients with microalbuminemia or clinical nephropathy, both ACE inhibitors (type 1 and type 2 patients) and ARBs (type 2 patients) are considered first-line therapy for the prevention of and progression of nephropathy. However, other strategies including diuretic and β-blocker–based therapy are also supported by evidence. Because of lingering concerns about the lower effectiveness of DCCBs (compared with ACE inhibitors, ARBs, β-blockers, or diuretics) in decreasing coronary events and heart failure and in reducing progression of renal disease in diabetes, these agents should be used as second-line drugs for patients who cannot tolerate the other preferred classes or who require additional agents to achieve the target blood pressure. Other classes, including α-blockers, may be used under specific indications (such as symptoms of BPH for α-blockers) or other agents have failed to control the blood pressure or have unacceptable side effects. Blood pressure, orthostatic changes, renal function, and serum potassium should be monitored at appropriate intervals.

Treatment decisions should be individualized based on the clinical characteristics of the patient, including comorbidities as well as tolerability, personal preferences, and cost.

Blood pressure should be measured at every routine diabetes visit. Patients found to have systolic blood pressure ≥130 mmHg or diastolic blood pressure ≥80 mmHg should have blood pressure confirmed on a separate day.

Orthostatic measurement of blood pressure should be performed to assess for the presence of autonomic neuropathy.

Treatment of Hypertension with Diabetes

A-Level evidence
Patients with diabetes should be treated to a diastolic blood pressure 300 mg/day), nephropathy, or renal insufficiency, an ARB should be strongly considered. If one class is not tolerated, the other should be substituted.

In patients over age 55 years, with hypertension or without hypertension but with another cardiovascular risk factor (history of cardiovascular disease, dyslipidemia, microalbuminuria, smoking), an ACE inhibitor (if not contraindicated) should be considered to reduce the risk of cardiovascular events.

In patients with a recent myocardial infarction, β-blockers, in addition, should be considered to reduce mortality.

B-Level evidence
Patients with diabetes should be treated to a systolic blood pressure C-Level evidence
In patients with microalbuminuria or overt nephropathy, in whom ACE inhibitors or ARBs are not well tolerated, a non-DCCB or β-blocker should be considered.

Expert consensus
If ACE inhibitors or ARBs are used, monitor renal function and serum potassium levels.
In elderly hypertensive patients, blood pressure should be lowered gradually to avoid complications.
Patients not achieving target blood pressure on three drugs, including a diuretic, and patients with a significant renal disease should be referred to a specialist experienced in the care of patients with hypertension.

Leave a comment

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>